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Abstract
In this study, we employed Geographical Information Systems and remote
sensing techniques to investigate the impact of land-use/cover change on land
surface temperature (LST) in a rapidly urbanisation city, Kunming in south-
west China. Spatial patterns of LST and land use for 1992 and 2006 were
derived from Landsat images to examine how LST responded to urban growth.
Remote sensing indices were used to quantify land-use types and employed as
explanatory variables in LST modelling. The geographically weighted regres-
sion (GWR), a location dependent model, was performed to explore the influ-
ences of the spatially varied land-use conditions on the LST patterns. Results
revealed that rapid urbanisation in Kunming altered the local thermal environ-
ment, particularly in increasing the LST in the zone surrounding the urban core.
Remote sensing indices demonstrated that water and vegetation played an
important role in mitigating the urban heat island effect, while built-up and
barren land accounted for the increase in LST. The GWR improved the
goodness-of-fit for LST modelling and provided insights into the spatially
varied relationship between LST and land-use conditions.

KEY WORDS land-use/cover change; urban heat island; remote sensing; geo-
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Introduction
Rapid population growth and continuous exploi-
tation of natural resources during the past
century have caused land-use/cover change
(LUCC) worldwide. Urbanisation is occurring in
many countries, increasing the concentration of
population in cities. The rate of urbanisation in
some developing countries is remarkable over
recent decades because of the pursuit of fast eco-
nomic development (Li et al., 2009). In China,
the launch of economic reforms since the late
1970s has largely accelerated the urbanisation
process (Luo and Wei, 2009).

The process of urbanisation often replaces
natural vegetation and agricultural land with
impervious surfaces, such as buildings and roads
(Thi Van and Xuan Bao, 2010). This trend has
produced a series of environmental impacts on
biodiversity, local climate, hydrologic processes,
and so forth (Streutker, 2002; Roy et al., 2009).
Of these impacts, the urban heat island (UHI),
the phenomenon where temperatures in urban
cores are higher than they are in surrounding
rural areas (Voogt and Oke, 2003), is commonly
associated with cities. Because each land-use/
cover type has its unique thermal, moisture, and
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optical spectral properties, LUCC will affect
the local thermal environment (Oke, 1982). For
example, the expansion of the impervious
surface area alters the heat capacity and radiative
properties of the land surface, largely reducing
the evapotranspiration in urban areas (Streutker,
2002).

Prior studies on urban thermal environments
have been based on air temperature obtained
from weather stations (Li et al., 2009). Although
these in situ data can provide accurate local tem-
perature, they are normally costly for large-scale
analyses and subject to private or governmental
restrictions (Owen et al., 1998). Furthermore,
data from weather stations are discrete points in
space, which hardly reflect the spatial variation
of temperature caused by different land-use/
cover types. An alternative to measuring urban
thermal environment is using land surface tem-
perature (LST) because it is able to modulate the
air temperature of the layer immediately above
the earth surface and is a major parameter
associated with surface radiation and energy
exchange (Voogt and Oke, 1998; Weng, 2009). A
variety of satellite sensors that capture thermal
infrared information have been available, such as
Landsat Thematic Mapper (TM) and Enhanced
Thematic Mapper Plus, and Moderate-resolution
Imaging Spectroradiometer, facilitating the in-
vestigation of LST in high spatial and temporal
resolutions.

Studies have investigated the relationship
between LST and LUCC (Chen et al., 2006;
Xiao and Weng, 2007; Thi Van and Xuan Bao,
2010) with two main foci. The first focus has
been on the comparison of the LST of different
land-use conditions. Multispectral techniques
have been used because thermal and land-use
information can be obtained simultaneously from
a single sensor (Voogt and Oke, 2003). Analy-
tical functions of Geographical Information
Systems (GIS), such as spatial overlay and image
differencing, coupled with biophysical para-
meters of surface temperature and emissivity
derived from remotely sensed images, have
effectively unveiled the impacts of LUCC
on thermal environment change (Chen et al.,
2006).

The second focus has been on modelling LST
based on remote sensing indices. Instead of
directly using land-use types that are categorical
data, remote sensing indices are employed to
quantitatively represent land-use/cover types.
For example, the Normalized Difference Vegeta-
tion Index (NDVI) has been used to validate the

role of green space in mitigating UHI (Yuan
and Bauer, 2007). The Normalized Difference
Built-up Index (NDBI) (Zha et al., 2003) and the
Normalized Difference Water Index (NDWI)
(Gao, 1996) have been employed to represent
urban and water areas quantitatively. Although
prior studies have adopted these indices to model
LST (Chen et al., 2006), only a few of them have
compared the modelling results of different
years.

When modelling the LST, global regression
models, such as ordinary least squares regression
(OLS), are commonly developed to estimate LST
based on explanatory variables (Weng et al.,
2004; Chen et al., 2006). These global models
assume that the relationships between LST
and explanatory variables are spatially constant
(Bagheri et al., 2009). However, the explanatory
variables, such as land-use/cover types and their
changes, often have various effects on LST
across the space. Research is thus needed that
employs localised statistical models in analysing
the relationship between LST and LUCC.

In this study, the effect of LUCC on LST in a
rapidly urbanisation city, Kunming, China, was
investigated. LST was derived from satellite
images, and the change of the LST pattern in
response to urbanisation was explored using GIS
and remote sensing techniques. Three remote
sensing indices were compared in terms of
their effectiveness in LST estimation. Effects of
spatial variation of land-use/cover distribution on
LST were examined by comparing the OLS, a
global model, with the geographically weighted
regression (GWR), a location dependent method.
Specifically, the study addressed three questions.
First, how has urbanisation affected the local
thermal environment? Second, how effective are
different remote sensing indices in LST estima-
tion? Third, does the location dependent GWR
method perform better in LST modelling than the
OLS method?

Study area
The study area, Kunming, is located from
102°10′ to 103°40′E and 24°23′ to 26°33′N
in the north-central Yunnan province, China
(Figure 1). It is situated on a plateau with eleva-
tion ranging from 1500 m to 2800 m. The met-
ropolitan area of Kunming is located in the
Dianchi basin with an elevation of 1890 m, sur-
rounded by mountains to the north, east, and
west. The city is characterised by a subtropical
highland climate with warm and humid summers
and cold and dry winters. Mean annual precipi-
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tation is around 1000 mm; mean annual sun
exposure is about 2250 hours.

Kunming is the capital ofYunnan province and
has experienced rapid development in the last
two decades. The gross domestic product (GDP)
increased from 16.9 billion ChineseYuan in 1992
to 56.2 billion in 1998. From 1998 to 2008, the
GDP nearly tripled, attaining 160.5 billion
Chinese Yuan (KBS, 2009). The fast economic
growth is accompanied by rapid urbanisation,
causing a great loss of green space in the subur-
ban areas and an increase of the urbanised area
from 184.4 km2 in 1992 to 257.8 km2 in 2005
(Cai, 2007). The study area is within metropoli-
tan Kunming, an area of 538.9 km2, consisting of
urban area (dominated by impervious land),
urban fringe (combination of impervious land
and agriculture land), and suburban area (domi-
nated by forest land).

Materials and methods

Data
Remotely sensed images and field survey data
were used in this study. The remotely sensed
images used were Landsat 5 TM images obtained

from the US Geological Survey website with
standard systematic corrections. Because of data
quality, availability, and comparability, two
scenes of images, dated 16 August 1992 and 19
May 2006, were used in this study. The optical
bands of TM images (bands 1–5 and 7) have
a spatial resolution of 30 m and the thermal
band (band 6) has a spatial resolution of 120 m.
Field survey data consisted of ground control
points collected using Global Positioning
Systems (GPS) for geo-referencing the two TM
images and photographs for assisting in image
interpretation.

Image preparation
Figure 2 is the flow chart of the analysis. For
image preparation, the GPS ground control
points were used to geo-reference and rectify
the two TM images to the Universal Transverse
Mercator coordinate system zone 48, using the
WGS84 datum. The nearest neighbour method
was employed to resample all the bands into
30 m. The root mean square error was controlled
within 0.5 pixels for these two images. To
remove the effect of cloud on land-use classifi-
cation and LST derivation, cloud cover, which

Figure 1 Location of the study area, the Kunming metropolitan area, in Yunnan Province, China.
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accounted for less than 1% of the images, was
masked out from the analysis. Atmospheric cor-
rection was carried out in ENVI 4.6 using the
Fast Line-of-sight Atmospheric Analysis of
Spectral Hypercubes (FLAASH) atmospheric
correction module to convert digital numbers
(DN) into reflectance. FLAASH is an atmo-
spheric correction tool based on the MODTRAN
radiation transfer codes and algorithms by which
a unique model can be computed for each image
(ENVI, 2009). The process filters the interfer-
ence from the path radiation, such as aerosol,
dust particle, and water vapour.

Image classification
The two TM images were classified into five
land-use types, including built-up land, water,
barren land, forest, and agriculture land, for the
assessment of LST change in response to urbani-
sation. This classification system was feasible
considering the medium resolution satellite
images used. In addition, it conformed to the
Chinese land-use system (SAC, 2007), and a
classification system used in prior research
whose study area shared the same characteristics
as Kunming city (Xiao and Weng, 2007).

The maximum likelihood classifier was
employed. Statistics of training samples were
plotted to ensure the separability of different
classes and comparability between two images
(Jensen, 2005). Accuracy assessment was per-
formed using the stratified random sampling
method. Field survey assisted by photographs
and knowledge of the area were used as refer-
ences in the assessment. The overall accuracy for
the images of 1992 and 2006 was 83.7% and
80.8%, respectively. The Kappa coefficients for
both images were above 0.78.

Derivation of LST
The DN values of both Landsat images were
converted into spectral radiance based on the fol-
lowing formula:

Radiance gain DN offset= × + (1)

Where, gain and offset were derived from the
head files of images and the Landsat current
radiometric calibration coefficients (Chander
et al., 2009).

The retrieved radiance was converted into
at-satellite brightness temperature (BT) based

Landsat

image in

1992

Image preparation

Optical bands (1–5, 7) Thermal band (6)

Landsat

image in

2006

Classified images

Change detection

Spatial overlay (a)

Spatial overlay (b) Correlation and

regression

Univariate regression

Multivariate regression

Derivation of remote

sensing indices

Derivation of BT

Derivation of LST

OLS GWR

Figure 2 Flow chart of the analysis. Spatial overlay (a) is conducted using the land-use layer and the LST layer, while spatial
overlay (b) uses the land-use change layer and the LST layer. BT, brightness temperature; GWR, geographically weighted
regression; LST, land surface temperature; OLS, ordinary least squares regression.
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on the following equation, assuming that land
cover had the same emissivity (Weng and Lu,
2008):

T
K

K Lb =
+( )

2

11ln λ

(2)

Where Tb is the at-satellite BT in Kelvin (K);
Ll is the spectral radiance in Wm-2 sr-1 mm-1;
K1 and K2 are the calibration constants
with K1 = 607.76 Wm-2 sr-1 mm-1 and K2 =
1260.56 K.

Because the focus of the study, like most of the
prior work (e.g. Weng et al., 2004; Chen et al.,
2006; Li et al., 2009), was on the spatial
variation of surface temperature, the following
methods were employed. To retrieve the LST, the
at-satellite BT (Tb) needs to be corrected accord-
ing to the real object properties. Therefore, the
emissivity corrected surface temperature was
computed following Artis and Carnahan (1982):

T
T

Ts
b

b

=
+ ×( )1 λ α εln

(3)

Where Ts is the LST in K; l is the wavelength of
emitted radiance (l = 11.5 mm) (Markham and
Barker, 1985); a equals 1.438 ¥ 10-2 mK, calcu-
lated as a = hc/s, with h as the Planck constant
(6.626 ¥ 10-34 Js), c as the velocity of light (2.998
¥ 108 m s-1), and s as the Boltzmann constant
(1.38 ¥ 10-23 J/K); e is the surface emissivity
derived from NDVI (Artis and Carnahan, 1982;
Roerink et al., 2000).

Derivation of remote sensing indices
Three remote sensing indices, NDVI, NDBI, and
Modified Normalized Difference Water Index
(MNDWI) (Xu, 2006), were computed to char-
acterise the land-use types of this study. The
NDVI is an index widely used to describe the
greenness of an area (Chen and Brutsaert, 1998),
and is used to represent the extent of forest and
agricultural land. The NDBI is an indicator of
urban areas, which can reveal the built-up and
barren land (Zha et al., 2003; Chen et al., 2006).
The MNDWI is selected to represent water areas
because water areas often reveal remarkable
differences in thermal characteristics when mod-
elling the urban thermal environment, and com-
pared with NDWI, MNDWI can remove the
built-up land noise on water in the urban areas
(Xu, 2008). These three indices are calculated as
follows:

NDVI
R R

R R
NIR RED

NIR RED

= −
+

(4)

NDBI
R R

R R
MIR NIR

MIR NIR

= −
+

(5)

MNDWI
R R

R R
GREEN MIR

GREEN MIR

= −
+

(6)

Where RNIR is the reflectance in the near infrared
band; RRED and RGREEN, respectively, stand for the
reflectance in red and green bands; RMIR denotes
the reflectance in the middle infrared band.

Analysis of the impacts of LUCC on LST
The classified land-use maps and the derived
LST layers of 1992 and 2006 were incorporated
into ArcGIS 9.3 to analyse the relationship
between the spatial patterns of LST and land-use
types. Because of spatial autocorrelation, a large
portion of the data was redundant for analysis.
Spatial sampling was thus carried out to extract
5929 points evenly distributed over the study
area for analysis. The LST layers were then
imposed onto the land-use layers to explore the
average temperature for each land-use type
(Spatial overlay (a) in Figure 2). The LSTs of
different land-use types in 1992 and 2006 were
compared to examine the thermal environment
change. To examine how LUCC might have
influenced the LST pattern, change detection was
performed in ArcGIS to identify the areas where
LUCC took place between 1992 and 2006. The
detected changed areas were then overlaid with
LST layers to calculate the LST differences
during this time period (Spatial overlay (b) in
Figure 2).

Variation in LST may be subject to three major
factors: seasonality, time of day, and land-use
condition. To investigate the LST variation asso-
ciated only with changes in land-use condition,
the effects of the other two factors need to be
minimised. Since the Landsat satellite follows a
sun-synchronous orbit, it ensures that images
taken for the same area have a similar local time.
The two images used in this study were both
captured at around 10:30 am local time, thereby
excluding the influence of the time of day factor.
As for seasonality, temperature difference for the
same land-use type between the two images in
August 1992 and May 2006 was assumed to be
caused by different seasons. To exclude the sea-
sonal influence, LST difference for the same
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land-use type was normalised against all other
LST differences:

dT T Tij j i= −( ) ( )2006 1992 (7)

ΔT T Ti i i= −( ) ( )2006 1992 (8)

dT dT Tn ij i= − Δ (9)

Where dTij is the temperature difference between
land-use type j in 2006 and land-use type i in
1992; DTi is the temperature difference for the
same land-use type i in 2006 and 1992; dTn is
the normalised temperature by subtracting DTi

from dTij.

Univariate and multivariate regression of LST
on remote sensing indices
The land-use types of the study area were repre-
sented using remote sensing indices of NDVI,
NDBI, and MNDWI. Areas with more greenness
will exhibit higher NDVI values. High NDBI
values generally signify areas with intensive
urban development. The MNDWI is sensitive to
water bodies, so it will exhibit high values for
areas covered by water.

The strength of the correlation between LST
and individual explanatory variables (i.e. each of
the three remote sensing indices) was first calcu-
lated using univariate regression. Multivariate
regression was next conducted to model the LST
based on the combination of the explanatory
variables. The multivariate regressions were per-
formed based on OLS and GWR. As opposed to
OLS which may mask out local variation, GWR
is a localised regression that examines spatially
non-stationary phenomena (Fotheringham et al.,
2002; Lloyd and Shuttleworth, 2005) and is
expressed as:

y u v u v Xi i k i i ki
k

i= ( ) + ( ) +∑β β ε0 , , (10)

Where b0 is the constant that depends on the
specific location i; bk is the coefficient of inde-
pendent variable Xk at the location i; ei is the
residual term at the location i; (ui, vi) indicates
the coordinates of the point i. GWR allows
local parameters to be estimated based on adja-
cent points. Coefficient bk is controlled by the
weight which is assigned according to the
spatial proximity of point i to its adjacent
points. Weight can be obtained through two
types of functions, fixed or adaptive (Páez et al.,

2002a; 2002b). In this study, an adaptive func-
tion is used which takes on the form below
(Fotheringham et al., 2002):

w
d

b
if j S

w otherwise

ij
ij

ij

= − ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ∈{ }

=

1

0

2 2

(11)

Where dij is the distance from point i to j; S is the
set that indicates the specified N nearest neigh-
bour points; b is the bandwidth, defined as the
distance from the Nth nearest neighbor point to
i. The corrected Akaile Information Criterion
(AICc), an indicator of the distance between the
unknown ‘true’ model and the derived model
(Fotheringham et al., 2002), was used to deter-
mine the bandwidth. A lower value of AICc gen-
erally reflects a better simulation; thus, following
Charlton and Fotheringham (2009), a computa-
tional process was done for each point to search
for the lowest AICc to determine the correspond-
ing bandwidth.

To evaluate the robustness of the spatial
regressions, the spatial distribution of residuals
from OLS and GWR were analysed. If the
residuals cluster together and display an obvious
spatial pattern, the constructed model may be in
question. Moran’s I, an index that measures the
correlation degree of the adjacent observations,
was used. The index ranges from -1 (perfect
negative autocorrelation) to 1 (perfect positive
autocorrelation) with values close to zero sug-
gesting no obvious spatial autocorrelation.

Results

Impacts of LUCC on LST
The LST maps of 1992 and 2006 (Figure 3) not
only exhibited the magnitude and spatial varia-
tion of surface temperature, but also showed the
effects of urbanisation on LST. The central urba-
nised area with a light tone indicated a warmer
surface temperature. The area with light tone
spread dramatically from 1992 to 2006, suggest-
ing the expansion of UHI.

The spatial pattern change of the remote
sensing indices also revealed the effect of LUCC
on LST (Figure 4). Areas with high NDVI shrank
tremendously from 1992 to 2006, suggesting
a green space loss (Figure 4a). Light tones in
the NDBI maps signified the urbanised areas
(Figure 4b), and they showed a marked urban
growth from 1992 to 2006. These results echoed
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the increased LST in the urban fringe (Figure 3).
The MNDWI maps reflected the water areas, but
did not display any major pattern change during
the time period (Figure 4c).

The LST maps of the two years were superim-
posed onto land-use maps to retrieve the surface
temperature for each land-use type. Of all the five
land-use classes, water exhibited the lowest tem-

Figure 3 Land surface temperature (LST) in (a) 1992 and (b) 2006. K, Kelvin degrees.

Figure 4 Remote sensing indices of (a) Normalized Difference Vegetation Index; (b) Normalized Difference Built-up Index;
and (c) Modified Normalized Difference Water Index in 1992 and 2006.
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perature with the minimum variation between the
two years because its relatively high thermal
inertia reduced the heat difference. Built-up and
barren land showed the highest temperatures in
1992 and 2006. The temperature of forest was
between that of water area and built-up land, with
a 1.3 K difference between 1992 and 2006, indi-
cating a relatively stable thermal environment for
forested land. Agricultural land exhibited a great
thermal difference of 5 K between the two years,
probably due to the different crop growing
stages. In August, crops in Kunming are in their
prime time so agricultural land is covered by full
green vegetation. While in May, crops are just
planted, with much of the land still covered by
soil. This resulted in a large temperature differ-
ence between the two dates for agricultural land
(Table 1).

To investigate the effect of LUCC on LST
change, differences in LST were calculated by
subtracting LST in 1992 from LST in 2006 for

each land-use change category (Table 2). LST
increased about 3.4 K and 1.9 K, respectively,
for forest and agricultural land that were con-
verted into built-up areas. The LST dropped
3.1 K when agricultural land changed to
forest, but rose 1.5 K when forest was turned

Table 1 Derived land surface temperature in Kelvin degrees
for each land-use type with the standard deviation in
parentheses.

Land-Use
Types

16 August
1992

19 May
2006

dT

Agriculture 293.8 (1.5) 298.9 (1.7) 5.1
Water 292.4 (1.1) 291.7 (1.0) -0.7
Barren 297.6 (2.1) 300.4 (2.0) 2.8
Built-up 298.3 (2.2) 301.0 (2.0) 2.7
Forest 295.1 (2.1) 296.4 (2.0) 1.3

dT is the temperature difference between 1992 and 2006.

Table 2 Effects of land-use/cover change on land surface temperature.

Land-Use Type dT (s.d.) Adjusted dT

16 August 1992 19 May 2006

Agriculture Agriculture 4.7 (2.2) 0
Built-up 6.6 (2.7) 1.9
Barren 7.1 (2.4) 2.4
Water -2.8 (1.7) -7.5
Forest 1.6 (2.2) -3.1

Forest Forest 1.7 (2.2) 0
Built-up 5.1 (2.8) 3.4
Barren 4.8 (3.0) 3.1
Water -0.7 (1.7) -2.4
Agriculture 3.2 (1.8) 1.5

Built-up Built-up 3.0 (1.9) 0
Agriculture 2.8 (2.2) -0.2
Barren 3.5 (2.7) 0.5
Water -1.4 (1.5) -4.4
Forest 1.7 (1.0) -1.3

Barren Barren 2.0 (2.4) 0
Built-up 3.7 (2.3) 1.7
Agriculture 1.7 (2.4) -0.3
Water -1.5 (1.4) -3.5
Forest -0.6 (2.2) -2.6

Water Water -0.9 (0.9) 0
Barren 3.3 (4.6) 4.2
Forest 1.2 (1.8) 2.1
Built-up 4.3 (4.6) 5.2
Agriculture 4.9 (3.3) 5.8

dT is the temperature difference between two years with standard deviation (s.d.) in parentheses. Adjusted dT is calculated based
on equations (7)–(9).
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into agricultural land. The conversion of barren
land had two main pathways. For barren land
converted into built-up land, an average of
1.7 K was gained, while for barren land
changed into green space, a temperature decline
was observed. A small fraction of the built-up
land in 1992 changed into green space in 2006,
accompanied by a decreased LST.

To highlight the spatial correspondence
between LST and LUCC, the land-use types of
built-up land and barren land were combined as
non-vegetated areas, and forest and agriculture
land were combined as vegetated areas. The
results exhibited a noticeable correspondence
between LUCC and LST change. It was evident
that urban sprawl took place on the fringes of the
Kunming city from 1992 to 2006, converting
vegetated areas into built-up or barren lands,
while some non-vegetated areas were turned into
vegetated areas in eastern Kunming (Figure 5a).
The thermal environment changed accordingly,
as seen in the increased LST in the surroundings
of the urban core and the decreased LST in
eastern Kunming.

Univariate modelling of LST based on remote
sensing indices
To better understand how LST dynamics were
associated with LUCC, correlation strength
between LST and remote sensing indices was
examined. Scatter plots of LST and remote
sensing indices assessed the effectiveness of each
index in modelling LST (Figure 6). For NDVI
values above zero, a negative relation with LST
was found, suggesting that densely vegetated
areas were associated with lower LST. For NDVI
values below zero, there were some scattered
points deviating from the trend line, probably due
to the presence of water that had a lower LST than
other land-use types (cf., Table 1). The LST dis-
played a positive relationship with NDBI. The
correlation coefficient increased from 0.55 to 0.59
from 1992 to 2006, suggesting that the NDBI
performed better when urban areas became domi-
nant. MNDWI showed a negative relation with
LST, which confirmed that water areas had a
notably cooling effect. However, the robustness of
the regression was reduced by the large variation
of LST where MNDWI was below zero.

Figure 5 Spatial correspondence between (a) changes in land use and (b) differences in land surface temperature (LST)
between 1992 and 2006. Each dot represents one of the 5929 sampled points. K, Kelvin degrees.
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Comparison of the OLS and the GWR
modelling on LST
Multivariate regression was carried out to
examine whether it would improve the LST
modelling. When the multivariate regression
operated based on the OLS method, results
did not reveal a significant improvement. The
MNDWI was not statistically significant at
the 0.05 level in 1992 (Table 3). Because of the
heterogeneity of the land-use mosaic and the
spatial variation in LST, the spatially varied
relationship between LST and remote sensing
indices cannot be reflected by the global mod-
elling method. Conversely, the results of the

localised regression method GWR showed a
much higher adjusted r2 value than the OLS
(Table 4). The performance of OLS and GWR
were further compared using the AICc indica-
tor; the AICc values for GWR were much lower
than those for OLS, suggesting that GWR per-
formed better than OLS (Table 4). Results from
Moran’s I did not show any spatial autocorrela-
tion among the residuals of the OLS and GWR
models, indicating the robustness of the models
(Table 4).

While the global regression of OLS uni-
formly showed that high NDVI values were
associated with low LST (Table 3), GWR

Figure 6 Relations between (a) NDVI and LST; (b) NDBI and LST; and (c) MNDWI and LST. K, Kelvin degrees; LST, land
surface temperature; MNDWI, Modified Normalized Difference Water Index; NDBI, Normalized Difference Built-up Index;
NDVI, Normalized Difference Vegetation Index.

Table 3 Parameter coefficients of the multivariate regression models based on the OLS and GWR methods.

Coefficients 1992 2006

OLS GWR (Median) OLS GWR (Median)

Intercept 299.131 298.512 298.907 299.767
NDVI 0.141 -5.150 -2.827 -4.036
NDBI 8.431 7.984 7.557 7.603
MNDWI -0.4221 -6.083 -5.778 -4.315

1 Parameter is not significant based on the t statistic (at the 0.05 level).
GWR, geographically weighted regression; MNDWI, Modified Normalized Difference Water Index; NDBI, Normalized Dif-
ference Built-up Index; NDVI, Normalized Difference Vegetation Index; OLS, ordinary least squares regression.
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allowed the spatially varied relationship
between NDVI and LST to be revealed. In most
places, coefficients of NDVI displayed as nega-
tive values, suggesting that vegetated areas
(often high NDVI) relieved the urban heat (thus
low LST) (Figure 7a). However, the coefficients
of GWR revealed that there were areas with
positive coefficients between NDVI and LST,

particularly in areas covered by water (cf., Fig-
ures 1 and 7a). This illustrated that GWR effec-
tively modelled the relationship between LST
and NDVI in areas with different land surface
characteristics.

Coefficients of NDBI showed a positive
relationship with LST across the study area
(Figure 7b). The coefficients increased from
1992 to 2006 in southern Kunming where large
areas of agricultural land was converted into
urban areas, indicating the effect of urban expan-
sion on enhancing the LST. Apart from repre-
senting water area, MNDWI can be used to
represent surface moisture (Zha et al., 2003;
Chen et al., 2006). The general negative coeffi-
cient of MNDWI (Figure 7c) thus suggested that
water bodies and surface moisture can moderate
the surface temperature. The comparison of the
MNDWI coefficients between 1992 and 2006
showed that areas with positive coefficients of
MNDWI expanded in the south-east, inferring
a loss of surface moisture because of the

Table 4 Comparison of the diagnostics for OLS and GWR
modelling.

Year Method Adjust r2 AICc Moran’s I

1992 OLS 0.531 28 128.7 -0.018
GWR 0.721 23 046.1 -0.003

2006 OLS 0.615 28 322.6 -0.009
GWR 0.746 22 668.1 -0.004

AICc, corrected Akaile Information Criterion; GWR, geo-
graphically weighted regression; OLS, ordinary least squares
regression.

Figure 7 Local coefficients of the geographically weighted regression for (a) Normalized Difference Vegetation Index;
(b) Normalized Difference Built-up Index; and (c) Modified Normalized Difference Water Index.
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conversion of vegetated land to impervious
surface (Figure 7c).

Discussion

Process of thermal environment change
The LUCC has extensively modified the
thermal environment of the Kunming city. The
LST became higher as the land use changed
from vegetated areas to barren and built-up land
(Table 2, Figure 5) in the following process. At
the beginning stage, the removal of vegetated
areas changed the surface energy balance,
which increased the sensible heat flux at the
cost of the latent heat flux (Owen et al., 1998).
The evapotranspiration of vegetation was sub-
stantially reduced. Following this stage was a
conversion of bare soil into impervious surface,
which altered the moisture balance. The reduc-
tion of the water storage of land further
strengthened the sensible heat flux. In addition,
the land surface conversion largely modified the
thermal property of the land surface (e.g. heat
capacity and thermal conductivity), creating a
warmer thermal environment (Li et al., 2009).
At the last stage, a great deal of impervious
surface was developed. Built-up areas might
facilitate sunlight absorption because of mul-
tiple times of reflections. This urban topogra-
phy, known as the ‘canyon effect’, further
intensified the UHI (Oke, 1982). Apart from
land-use change, urbanisation with increased
human population also contributed to the urban
thermal environment change with the rising
anthropogenic heat discharge.

Effects of green policies on the
thermal environment
Although areas with high LST have increased
from 1992 to 2006 (Figure 3), several spots with
dark tone indicating a low LST can be detected in
the urban area in 2006 (Figure 3b). These areas
were associated with urban parks and riparian
belts with vegetation cover. In recent years,
Kunming implemented several policies to intro-
duce green space into the city. The campaigns to
allot more green patches and corridors into the
city ameliorated the urban environment because
of the role of vegetation in mitigating UHI, as
seen that the temperature of vegetated areas was
around 3–4 K lower than the built-up land
(Tables 1 and 2). As a result, more cooling spots
in the urban core appeared on the 2006 LST map
(Figure 3b). The dark line going through the

urban centre in Figure 3b showing the position of
the Panlong Canal also became noticeable in
2006, suggesting a cooling trend along the
Panlong Canal (Figures 1 and 3). This was prob-
ably because of the greening initiatives along the
banks of the Panlong Canal, which expanded the
green strips and thereafter reduced the LST. Also,
the greening initiatives implemented in the east
of Kunming created or enlarged several urban
parks. Accordingly, some barren lands were
converted into vegetated areas and noticeably
reduced the surface temperature in eastern
Kunming (Figure 5).

Localised statistics in LST modelling
Prior studies pointed out that a single remote
sensing index could not reflect the combined
impacts of vegetation, buildings, water bodies,
and other land cover on LST (Buyantuyev and
Wu, 2010). Multivariate regression conducted in
this study confirmed the importance of combin-
ing remote sensing indices in LST modelling.
The global models based on the OLS method
failed to capture the spatial variation of LST
because all the parameters were uniformly
applied to the data points regardless of their loca-
tions. In contrast, GWR provided local coeffi-
cients and residuals, allowing comparison of the
modelling results in different places. The local
coefficients could be visualised on maps to illus-
trate the spatially varied relationship between
each of the remote sensing indices and LST
(Figure 7). The increased values of AICc and the
adjusted r2 both suggested the effectiveness of
GWR in LST modelling.

Conclusion and future work
This study contributed to the understanding
of LUCC on the thermal environment. Rapid
urbanisation notably caused the increase of
LST in Kunming, China, particularly in the area
surrounding the urban core. Among the three
remote sensing indices examined in the study,
NDBI revealed a strong relation with LST.
Multivariate regression results showed that the
local regression model based on GWR signi-
ficantly improved the goodness-of-fit and
provided insights into the spatially varied rela-
tionship between LST and land-use conditions.
The findings also suggested that sustainable
urban green policies would be important in
moderating the urban thermal environment.
Because different seasons of remote sensing
images may have caused the LST difference in
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agricultural land in this study, future research
can be conducted to examine how LST varies
with different land-use/cover types in different
seasons, particularly in the seasonal change of
the UHI intensity and the effect of green space
in mitigating the UHI.
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